Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Microb Cell Fact ; 22(1): 96, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2315527

RESUMEN

BACKGROUND: The use of probiotic lactic acid bacteria as a mucosal vaccine vector is considered a promising alternative compared to the use of other microorganisms because of its "Generally Regarded as Safe" status, its potential adjuvant properties, and its tolerogenicity to the host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), is highly transmissible and pathogenic. This study aimed to determine the potential of Lactiplantibacillus plantarum expressing SARS-CoV-2 epitopes as a mucosal vaccine against SARS-CoV-2. RESULTS: In this study, the possible antigenic determinants of the spike (S1-1, S1-2, S1-3, and S1-4), membrane (ME1 and ME2), and envelope (E) proteins of SARS-CoV-2 were predicted, and recombinant L. plantarum strains surface-displaying these epitopes were constructed. Subsequently, the immune responses induced by these recombinant strains were compared in vitro and in vivo. Most surface-displayed epitopes induced pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α and interleukin (IL)-6] and anti-inflammatory cytokines (IL-10) in lipopolysaccharide-induced RAW 264.7, with the highest anti-inflammatory to pro-inflammatory cytokine ratio in the S1-1 and S1-2 groups, followed by that in the S1-3 group. When orally administered of recombinant L. plantarum expressing SARS-CoV-2 epitopes in mice, all epitopes most increased the expression of IL-4, along with induced levels of TNF-α, interferon-gamma, and IL-10, specifically in spike protein groups. Thus, the surface expression of epitopes from the spike S1 protein in L. plantarum showed potential immunoregulatory effects, suggesting its ability to potentially circumvent hyperinflammatory states relevant to monocyte/macrophage cell activation. At 35 days post immunization (dpi), serum IgG levels showed a marked increase in the S1-1, S1-2, and S1-3 groups. Fecal IgA levels increased significantly from 21 dpi in all the antigen groups, but the boosting effect after 35 dpi was explicitly observed in the S1-1, S1-2, and S1-3 groups. Thus, the oral administration of SARS-CoV-2 antigens into mice induced significant humoral and mucosal immune responses. CONCLUSION: This study suggests that L. plantarum is a potential vector that can effectively deliver SARS-CoV-2 epitopes to intestinal mucosal sites and could serve as a novel approach for SARS-CoV-2 mucosal vaccine development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Humanos , Interleucina-10 , Inmunidad Mucosa , Epítopos , Factor de Necrosis Tumoral alfa , Vacunas contra la COVID-19 , COVID-19/prevención & control , Inmunización , Citocinas
2.
Genes Genomics ; 44(5): 617-628, 2022 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1838428

RESUMEN

BACKGROUND: Since COVID-19 was declared the pandemic by the WHO, it has continued to spread. There is a need for rapid, efficient, and accurate diagnostic kits and techniques to control its spread. OBJECTIVE: The diagnostic capability of the qRT-PCR-based Real-Q 2019-nCoV Detection Kit and dPCR-based Dr. PCR™ Di20K COVID-19 Detection Kit was compared and evaluated. METHODS: Diagnostic tests for COVID-19 were performed using two different COVID-19 kits and 301 individual specimens with confirmed COVID-19 positive/negative at the government-accredited medical institution. Assessment of diagnostic capability was measured through diagnostic sensitivity, specificity, Cohen's Kappa coefficient, and dilutional linearity tests. RESULTS: The COVID-19 diagnostic test results using two kits and 301 individual specimens perfectly matched the pre-diagnosis results of the medical institution. In addition, the measurement results of diagnostic sensitivity and specificity were "1", indicating high diagnostic capability. Cohen's Kappa coefficient value is "1", which means that the diagnosis concordance between the two kits is "Almost Perfect". As a result of dilutional linearity tests to evaluate their detection capability, both kits were measured with very high detection reliability. CONCLUSION: Here, we propose that the dPCR-based Dr. PCR™ Di20K COVID-19 Detection Kit has the advantages of the dPCR method reported in the previous study and is suitable for point-of-care testing (POCT) by overcoming the limitations of space, test time, cross-over contamination, and biosafety due to omitting RNA extraction process.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Sistemas de Atención de Punto , Reacción en Cadena de la Polimerasa , ARN Viral/análisis , ARN Viral/genética , Reproducibilidad de los Resultados , SARS-CoV-2/genética
3.
Genomics Inform ; 19(3): e34, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1463988

RESUMEN

Digital PCR (dPCR) is the third-generation PCR that enables real-time absolute quantification without reference materials. Recently, global diagnosis companies have developed new dPCR equipment. In line with the development, the Lab On An Array (LOAA) dPCR analyzer (Optolane) was launched last year. The LOAA dPCR is a semiconductor chip-based separation PCR type equipment. The LOAA dPCR includes Micro Electro Mechanical System that can be injected by partitioning the target gene into 56 to 20,000 wells. The amount of target gene per wells is digitized to 0 or 1 as the number of well gradually increases to 20,000 wells because its principle follows Poisson distribution, which allows the LOAA dPCR to perform precise absolute quantification. LOAA determined region of interest first prior to dPCR operation. To exclude invalid wells for the quantification, the LOAA dPCR has applied various filtering methods using brightness, slope, baseline, and noise filters. As the coronavirus disease 2019 has now spread around the world, needs for diagnostic equipment of point of care testing (POCT) are increasing. The LOAA dPCR is expected to be suitable for POCT diagnosis due to its compact size and high accuracy. Here, we describe the quantitative principle of the LOAA dPCR and suggest that it can be applied to various fields.

4.
Genes Genomics ; 43(11): 1277-1288, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1409152

RESUMEN

BACKGROUND: Coronavirus disease of 2019 (COVID-19) is well known as a fatal disease, first discovered at Wuhan in China, ranging from mild to death, such as shortness of breath and fever. Early diagnosis of COVID-19 is a crucial point in preventing global prevalence. OBJECTIVE: We aimed to evaluate the diagnostic competency and efficiency with the Allplex™ 2019-nCoV Assay kit and the Dr. PCR 20 K COVID-19 Detection kit, designed based on the qRT-PCR and dPCR technologies, respectively. METHODS: A total of 30 negative and 20 COVID-19 positive specimens were assigned to the diagnostic test by using different COVID-19 diagnosis kits. Diagnostic accuracy was measured by statistical testing with sensitivity, specificity, and co-efficiency calculations. RESULTS: Comparing both diagnostic kits, we confirmed that the diagnostic results of 30 negative and 20 positive cases were the same pre-diagnostic results. The diagnostic statistics test results were perfectly matched with value (1). Cohen's Kappa coefficient was demonstrated that the given kits in two different ways were "almost perfect" with value (1). In evaluating the detection capability, the dilutional linearity experiments substantiate that the Dr. PCR 20 K COVID-19 Detection kit could detect SARS-CoV-2 viral load at a concentration ten times lower than that of the Allplex™ 2019-nCoV Assay kit. CONCLUSIONS: In this study, we propose that the dPCR diagnosis using LOAA dPCR could be a powerful method for COVID-19 point-of-care tests requiring immediate diagnosis in a limited time and space through the advantages of relatively low sample concentration and small equipment size compared to conventional qRT-PCR.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2/aislamiento & purificación , COVID-19 , Genes Virales/genética , Humanos , República de Corea , SARS-CoV-2/genética , Sensibilidad y Especificidad , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA